ECS 455 Chapter 1

Introduction & Review

Dr. Prapun Suksompong

prapun@siit.tu.ac.th

Office Hours:

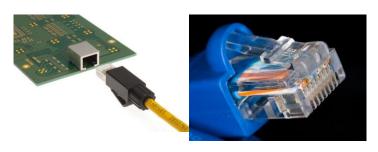
BKD 3601-7

Monday 9:20-10:20

Wednesday 9:20-10:20

ECS 455 Chapter 1

Introduction & Review


1.1 Mobile Communications

Wired Communication

• Cup-and-string communication

• POTS, Ethernet

Wireless communication

Duncan Wilson's Cup Communicator

- Cellular Systems: 1G, 2G, 2.5G, 3G, **4G**
- Wireless LAN Systems: WiFi (802.11a/b/g/n/ac)

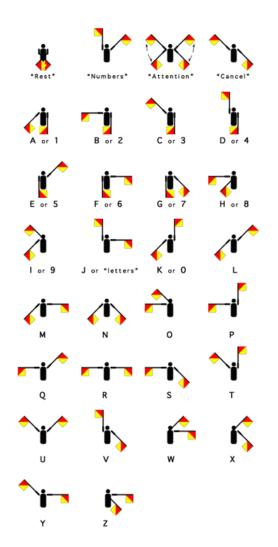
Overview of Mobile Communications

- Wireless/mobile communications is the **fastest growing** segment of the communications industry.
- Cellular systems have experienced **exponential growth** over the last decade.
- Cellular phones have become a critical business tool and part of everyday life in most developed countries, and are rapidly replacing wireline systems in many developing countries.

Mobile?

- The term "mobile" has historically been used to classify all radio terminal that could be moved during operation.
- More recently,
 - use "mobile" to describe a radio terminal that is attached to a high speed mobile platform
 - e.g., a cellular telephone in a fast moving vehicle
 - use "portable" to describes a radio terminal that can be handheld and used by someone at walking speed
 - e.g., a walkie-talkie or cordless telephone inside a home

[Goldsmith, 2005, Section 1.1]


History (1)

- The first wireless networks were developed in the pre-industrial age.
- These systems transmitted information over line-of-sight distances (later extended by telescopes) using smoke signals, torch signaling, flashing mirrors, signal flares, or semaphore flags.

Semaphore

History: Radio

- Early communication networks were replaced first by the **telegraph network** (invented by Samuel **Morse** in 1838) and later by the telephone.
- In 1895, Marconi demonstrated the first radio transmission.
- Early radio systems transmitted **analog** signals.
- Today most radio systems transmit **digital** signals composed of binary bits.
- A digital radio can transmit a continuous bit stream or it can group the bits into packets.
- The latter type of radio is called a packet radio and is characterized by bursty transmissions

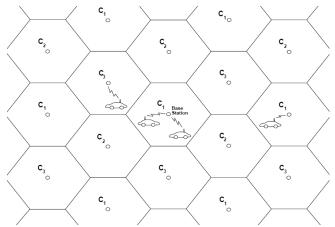
History: ALOHANET

- The first network based on packet radio, **ALOHANET**, was developed at the University of Hawaii in 1971.
- ALOHANET incorporated the first set of protocols for channel access and routing in packet radio systems, and many of the underlying principles in these protocols are still in use today.
- Lead to **Ethernet** and eventually wireless local area networks (**WLAN**).

History: Pre-Cellular (1)

- The **most successful** application of wireless networking has been the **Cellular telephone system**.
- The roots of this system began in 1915, when wireless voice transmission between New York and San Francisco was first established.
- 1946: First public **mobile telephone** service was introduced in 25 cities across the United States.
- The equipment was expensive at \$2,000
 - More than the price of a typical new car (at that time).

History: Pre-Cellular (2)


- These initial systems used a single **central transmitter** to cover an **entire** metropolitan **area**.
 - High-powered transmitter & Large tower
 - Inefficient!
 - FM push-to-talk
- 1976: (30 yrs after the introduction of the service in 1946),
 - the New York system (10M people) could only support 543 paying customers.
 - 3,700 on the waiting list
- The mobile units weighed about 10 kilograms and put out a steady 20-25 watts.
- The central transmitters that communicate with the mobile units broadcast 200 to 250 watts.

History: Pre-Cellular (3)

- The central station could reliably communicate with the mobile units up to a radius of approximately 25 miles (50 km).
- Beyond that, up to a radius of 60 to 100 miles, the signal was too weak for consistent service, but strong enough to interfere with any other mobile radio system.
- As a result, the central transmitters had to be at least 100 miles apart, leaving a 50 mile **blank space** between them.
- So a customer could use the sporadic and unreliable service only within the confines of one area.

History: 1G Cellular (1)

- A solution to this capacity problem emerged during the 50's and 60's when researchers at AT&T **Bell Lab**oratories developed the **cellular concept**.
- 1968: AT&T proposed the concept to the FCC
- Cellular systems exploit the fact that the power of a transmitted signal falls off with distance.
- Thus, two users can operate on the same frequency at spatially-separate locations with minimal interference between them.
 - Frequency reuse

History: 1G Cellular (2)

- Japan had the world's first commercially available cellular phone system.
 - Nippon Telegraph and Telephone (NTT) created a cellular test system for Tokyo in 1975, with the result coming to market in 1979.
- The first trial in America of a complete, working cellular system was held in **Chicago** in the late 1970's.
- 1983: Advanced Mobile Phone System (AMPS)
 - First US cellular telephone system
 - Deployed in 1983 by Ameritech in Chacago, IL.
 - Worked well. (FM, FDMA)
 - May even have worked too well.
 - Its satisfactory performance lowered the demand for a better system, allowing Europe to take the lead by creating a digital cellular system first.

Old Cell Phone

Motorola's DynaTAC

First commercially available cell phone in 1983

- Weighed about 2 lbs (1 Kg)
- 10 inches high, making it larger than some Chihuahuas
- Battery life: 30 minutes of talk time
- \$4,000

History: 2G Cellular

- The first-generation (1G) systems introduced in the 1980s were characterized by <u>analog speech</u> transmission.
- The **second generation** (**2G**) of cellular systems, first deployed in the early 1990's, were based on **digital** communications.
- The shift from analog to digital was driven by its higher capacity and the improved cost, speed, and power efficiency of digital hardware.
- 1991: US Digital Cellular (**USDC IS-54** > IS-136)
 - Three times capacity of AMPS because digital modulation, speech coding, and TDMA
- While second generation cellular systems initially provided mainly voice services, these systems gradually evolved to support data services such as email, Internet access, and short messaging.

Two important 2G systems

- **GSM** supports SMSs and user data at rates only up to 9.6 kb/s.
 - Security features including (for example) the encryption of data and signaling messages on the path between the mobile phone and the BS.
 - Subscriber identity module (SIM)
 - A smart card
 - Contain the subscriber's personal details
 - Can be moved from one handset to another.
- IS-95B (cdmaOne) provides data rates in the range of 64 to 115 kb/s in increments of 8 kb/s over a 1.25 MHz channel.
 - Each cell uses a carrier with a bandwidth of 1.25MHz, which is divided into 64 data and signalling channels by the use of orthogonal CDMA codes.

History: 2G Standard Proliferation

- Unfortunately, the **great market potential** for cellular phones led to a proliferation of (incompatible) second generation cellular standards.
- As a result of the **standard proliferation**, many cellular phones are forced to be **multi-mode**.

Major Mobile Radio Standards in North America

Standard	Туре	Year of Introduction	Multiple Access	Frequency Band	Modula- tion	Channel Bandwidth
AMPS	Cellular	1983	FDMA	824-894 MHz	FM	30 kHz
NAMPS	Cellular	1992	FDMA	824-894 MHz	FM	10 kHz
USDC	Cellular	1991	TDMA	824-894 MHz	π/4- DQPSK	30 kHz
			FH/			
CDPD	Cellular	1993	Packet	824-894 MHz	GMSK	30 kHz
	Cellular/			824-894 MHz	QPSK/	
IS-95	PCS	1993	CDMA	1.8-2.0 GHz	BPSK	1.25 MHz
GSC	Paging	1970s	Simplex	Several	FSK	12.5 kHz
POCSAG	Paging	1970s	Simplex	Several	FSK	12.5 kHz
FLEX	Paging	1993	Simplex	Several	4-FSK	15 kHz
DCS-1900 (GSM)	PCS	1994	TDMA	1.85-1.99 GHz	GMSK	200 kHz
	Cordless/		TDMA/		π/4-	
PACS	PCS	1994	FDMA	1.85-1.99 GHz	DQPSK	300 kHz
MIRS	SMR/PCS	1994	TDMA	Several	16-QAM	25 kHz
iDen	SMR/PCS	1995	TDMA	Several	16-QAM	25 kHz

Major Mobile Radio Standards in Europe

Standard	Туре	Year of Introduction	Multiple Access	Frequency Band	Modula- tion	Channel Bandwidth
JTACS	Cellular	1988	FDMA	860-925 MHz	FM	25 kHz
PDC	Cellular	1993	TDMA	810-1501 MHz	π/4- DQPSK	25 kHz
NTT	Cellular	1979	FDMA	400/800 MHz	FM	25 kHz
NTACS	Cellular	1993	FDMA	843-925 MHz	FM	12.5 kHz
NTT	Paging	1979	FDMA	280 MHz	FSK	12.5 kHz
NEC	Paging	1979	FDMA	Several	FSK	10 kHz
PHS	Cordless	1993	TDMA	1895-1907 MHz	π/4- DQPSK	300 kHz

Major Mobile Radio Standards in Japan

Standard	Туре	Year of Introduction	Multiple Access	Frequency Band	Modula- tion	Channel Bandwidth
ETACS	Cellular	1985	FDMA	900 MHz	FM	25 kHz
NMT-450	Cellular	1981	FDMA	450-470 MHz	FM	25 kHz
NMT-900	Cellular	1986	FDMA	890-960 MHz	FM	12.5 kHz
GSM	Cellular /PCS	1990	TDMA	890-960 MHz	GMSK	200 kHz
C-450	Cellular	1985	FDMA	450-465 MHz	FM	20 kHz/ 10 kHz
ERMES	Paging	1993	FDMA	Several	4-FSK	25 kHz
СТ2	Cordless	1989	FDMA	864-868 MHz	GFSK	100 kHz
DECT	Cordless	1993	TDMA	1880-1900 MHz	GFSK	1.728 MHz
DCS-1800	Cordless /PCS	1993	TDMA	1710-1880 MHz	GMSK	200 kHz

History (Thailand)

- 1G
 - 1986 (2529): NMT470 (TOT)
 - Nordic Mobile Telephone System @ 470MHz
 - AMPS (Advanced Mobile Phone System)
 - 1990 (2533): Cellular 900 (AIS)
 - Worldphone 800 (TAC)
- 2G: GSM (Global System for Mobile Communication)
 - 2537: GSM Advance @ 900 Mhz (AIS)
 - Worldphone 1800 (TAC)

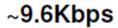
GSM Enhancement

- Want to deliver *data* as well as voice.
- 2.5G: General Packet Radio Service (GPRS)
 - Provide connectivity to IP networks (Internet).
 - Each slot can handle up to 20 kb/s. Each user may be allocated up to 8 slots
 - Data rates up to about 160 kb/s per user are possible.
 - A single time slot may be shared by multiple users for transferring packet mode data.
- 2.75G: Enhanced Data Rates for GSM Evolution (EDGE)
 - Support IP-based services in GSM at rates up to 384 kb/s

2.5G: GPRS

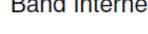
- General Packet Radio Service
- The first commercial launches for GPRS took place in 2001.
- Construction of a **packet switched** core network, to run alongside the **circuit switched** network that was originally built for GSM.
 - "always on" connection that remains active as long as the phone is within range of the service.
- A single time slot may be shared by multiple users for transferring packet mode data.

2.5G: GPRS


- A good approximation for throughput in "average" conditions is 10 Kbps per time slot. [Korhonen, 2003]
- Especially suitable for non-real-time applications, such as email and Web surfing.
- Bursty data is well handled with GPRS, as it can adjust the assigned resources according to current needs.
- Not well-suited for real-time applications
 - Resource allocation in GPRS is contention based
 - Cannot guarantee an absolute maximum delay.

2.75?G: EDGE

- Enhanced Data Rates for GSM Evolution
 - Originally this acronym stood for Enhanced Data rates for GSM Evolution, but now it translates into **Enhanced Data rates for Global Evolution**, as the EDGE idea can also be used in systems other than GSM [Korhonen, 2003]
- Higher modulation efficiency
 - Eight-phase shift keying (8PSK)
 - Can only be used effectively over a short distance.
 - For wide area coverage, the old GMSK (Gaussian minimum shift key) is still needed.
- Only requires a **software upgrade** to base stations
 - if the RF amplifiers can handle the non-constant envelope modulation with EDGE's relatively high peak-to-average power ratio (PAPR).
- EDGE is popular in North America, where the allocation of carrier frequencies has made it hard for GSM operators to upgrade to UMTS.


Motivation

Mobile Narrow Band Internet

14.4~64Kbps

Low-QoS Mobile Multimedia Services

64~144Kbps

High-quality, Smooth and Low-delay Video, Voice, and Music Services

20~300Kbps

Mobile Broadband Internet Surfing

64~300Kbps

Abundant and High-quality New Mobile Services

300K~5Mbps

3G

- Studies started even before the earliest 2G systems arrived on the market.
- International Mobile Telecommunications-2000 (IMT-2000)
 - A subgroup of the International Telecommunication Union (ITU)
 - Published a set of performance requirements of 3G (for both packet-switched and circuit-switched data):
 - A minimum data rate of 144 Kbps in the vehicular environment
 - A minimum data rate of 384 Kbps in the pedestrian environment
 - A minimum data rate of 2 Mbps in the fixed indoor and picocell environment
- There are several wireless standards and systems that qualify as third generation (3G) systems.
 - UMTS
 - CDMA2000

3GPP and 3GPP2

(Collaboration between groups of telecommunications associations (partners))

3rd Generation Partnership Project

3gpp2.org

3gpp.org

12

W-CDMA

CDMA2000

Scope

3G: IMT-2000

International Mobile

Telecommunications

systems

ITU-R

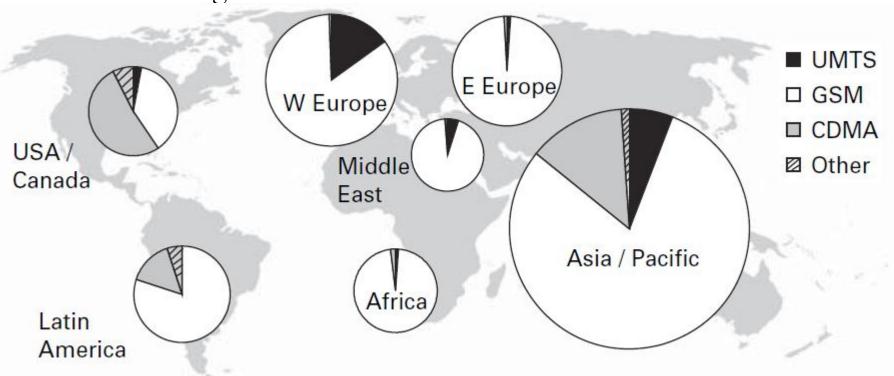
R = Radiocommunication Standardization Sector

Union

The 3G technologies standardized by 3GPP are often referred to collectively as WCDMA.

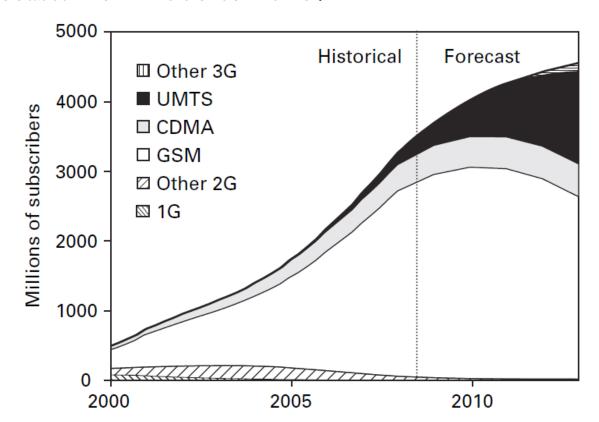
3GPP uses two other acronyms to describe its specifications:

UMTS (Universal Mobile Telecommunications System) applies to the entire cellular network contained in hundreds of 3GPP specifications; and


UTRAN (Universal Terrestrial Radio Access Network) refers to the collection of network elements, and their interfaces, used for transmission between mobile terminals and the network infrastructure.

UMTS

- Universal Mobile Telecommunications System (UMTS)
- The research activity on UMTS started in **Europe** at the beginning of the 1990s.
 - Even before the earliest 2G systems arrived on the market
- Designed to support wideband services with data rates up to 2Mbit/s.
- Developed from GSM
 - Keep the core network more-or-less intact
 - Change the air interface to use CDMA
- Compatibility between UMTS and GSM:
 - Most UMTS mobiles also implement GSM, and the network can hand them over from a UMTS base station to a GSM one if they reach the edge of the UMTS coverage area.
 - However, network operators cannot implement the two systems in the same frequency band, so they are not fully compatible with each other.


Market Share

• Numbers of subscribers to different mobile communication technologies in 2008.

Growth

• Growth in the use of different mobile telecommunication technologies, with historical data from 2000 to 2008, and forecasts from 2008 to 2013.

[Cox, 2008, Fig 1.16]

cdma2000

- Another 3G mobile technology standard
- Multicarrier, direct-sequence CDMA FDD system.
- Backward-compatible with its previous 2G iteration IS-95 (cdmaOne).
- CDMA2000 1X (IS-2000)
 - also known as 1x and 1xRTT
 - 1x = Spreading Rate 1 = use the same chip rate of IS-95 (i.e., 1.2288 Mcps).
 - Same RF bandwidth as IS-95: a duplex pair of 1.25 MHz radio channels.
 - Core CDMA2000 wireless air interface standard.
 - Almost doubles the capacity of IS-95 by adding 64 more traffic channels to the forward link, orthogonal to (in quadrature with) the original set of 64.

Reverse link

1.25 MHz

station

station

Evolution of UMTS Specifications

Release	Functional freeze	Main UMTS feature of release			
Rel-99	March 2000	Basic 3.84 Mcps W-CDMA (FDD & TDD)			
Rel-4	March 2001	1.28 Mcps TDD (aka TD-SCDMA)			
Rel-5	June 2002	HSDPA Also dubbed 3.5G, 3G+ or turbo 3G			
Rel-6	March 2005	HSUPA (E-DCH)			
Rel-7	December 2007	HSPA+ (64QAM downlink, MIMO, 16QAM uplink) LTE and SAE feasibility study			

HSPA

3.5G?

- **High Speed Packet Access (HSPA)** is a collection of two mobile telephony protocols
 - High Speed Downlink Packet Access (HSDPA) and
 - High Speed Uplink Packet Access (HSUPA)
- Extend and improve the performance of existing WCDMA/UMTS protocols.
- Current HSDPA deployments support down-link speeds of 1.8, 3.6, 7.2 and 14.0 Megabit/s.
- Many HSPA rollouts can be achieved by a **software upgrade** to existing 3G networks, giving HSPA a head start over WiMAX, which requires dedicated network infrastructure.
- There is also a further standard, **Evolved HSPA (HSPA+)**.
 - HSPA+ provides speeds of up to **42 Mbit/s** downlink and 84 Mbit/s with Release 9 of the 3GPP standards.

3.9G?

HSPA+

- HSPA+ provides data rates up to
 - 168 Megabits per second (Mbit/s) to the mobile device (downlink) and
 - 22 Mbit/s from the mobile device (uplink).
- Technically these are achieved through the use of MIMO and higher order modulation (64QAM) or combining multiple cells into one with a technique known as Dual-Cell HSDPA.
- The 168 Mbit/s and 22 Mbit/s represent theoretical peak speeds.
 - Only in very good radio conditions (very close to cell tower) or if the terminal and network both support either MIMO or Dual-Cell HSDPA
 - The actual speed for a user will be lower.
- Deliver significant battery life improvements and dramatically quicker wake-from-idle time delivering a true always-on connection.

3G in Thailand: HSPA, HSPA+

- Truemove H: 850 MHz
 - Launched HSPA+ in September 2011
- **DTAC**: 850 MHz
 - Launched HSPA+ in September 2011
- **AIS**: 900 MHz
 - Launched HSPA+ in April 2011
- **TOT3G**: 2.1 GHz
- Different bands

DTAC's Aircard-Tablet Unlimited

	aircard-tablet unlimted			
ค่าบริการรายเดือน	399 (UTII)	650 (UTD)	790 (UTD)	999 (UTIN)
อินเทอร์เน็ด 3G/EDGE	ไม่จำกัด	ไม่จำกัด	ไม่จำกัด	ไม่จำกัด
36 ความเร็วสูงสุด 42 Mbps	Unlimited Starter 1 GB*	Unlimited Pro 3 GB**	Unlimited Master 5 GB**	Unlimited Master 7 GB**
dtac wifi	-	ไม่จำกัด	ไม่จำกัด	ไม่จำกัด
	โปรโมชั่นพิเศษ			
สำหรับลูกค้าใหม่	199 บาท (3 เดือน)	ไม่มี	ไม่มี	ไม่มี
ค่าโทรเทินจากแพ็ทเทจ และค่าบริการเสริม				
ศาโทร	1.5	1.5	1.5	1.5
ค่าบริการอินเทอร์เน็ต	ไม่มี	ไม่มี	ไม่มี	ไม่มี
ค่าบริการ SMS	2	2	2	2
ค่าบริการ MMS	5	5	5	5

สำหรับลูกค้าที่ซื้อแพ็กเกจ 399 รับสิทธิใช้ 3G ความเร็วสูงสุดถึง 42 Mbps หลังจากครบจำนวนที่กำหนดจะปรับลด ความเร็วไม่เกิน 64 Kbps

สำหรับลูกค้าที่ซื้อแพ็กเกจ 650, 790, 999 รับสิทธิใช้ 3G ความเร็วสูงสุดถึง 42 Mbps หลังจากครบจำนวนที่กำหนดจะ ปรับลดความเร็วไม่เกิน 384 Kbps

UMTS to LTE

(Collaboration between groups of telecommunications associations (partners))

3rd Generation Partnership Project

Scope

3G: IMT-2000

UMTS (W-CDMA)

CDMA2000

International Mobile Telecommunications systems Lte.

Long Term Evolution

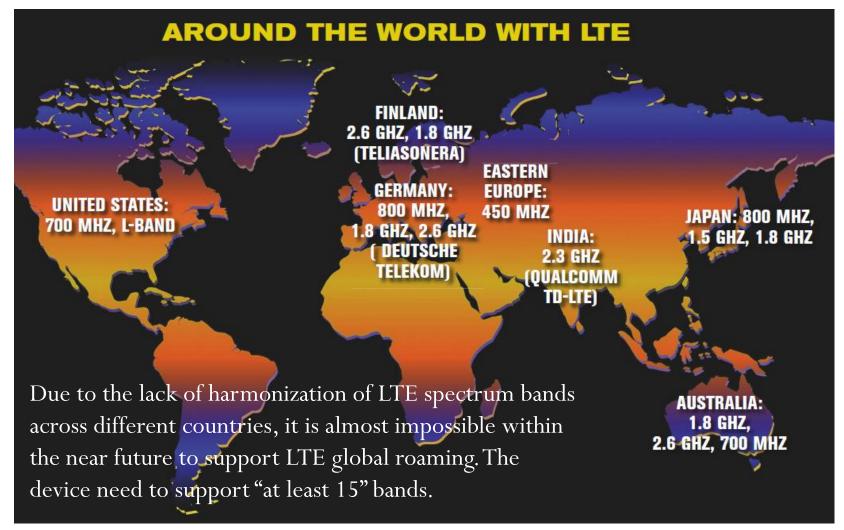
Telecommunication

Union

4G: IMT-Advanced

LTE-Advanced

ITU-R


R = Radiocommunication Standardization Sector

"4G" in the US

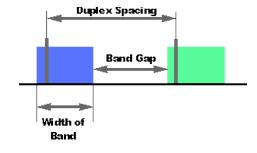
LTE: Around the World

iPhone 5

- 2G
 - GSM 850 / 900 / 1800 / 1900 GSM A1428
 - CDMA 800 / 1900 / 2100 CDMA A1429
- 3G
 - HSDPA 850 / 900 / 1900 / 2100 GSM A1428
 - CDMA2000 1xEV-DO CDMA A1429
- 4G
 - LTE 700 MHz Class 17 / 1700 / 2100 GSM A1428 or
 LTE 850 / 1800 / 2100 GSM A1429
 - LTE 700 / 850 / 1800 / 1900 / 2100 CDMA A1429

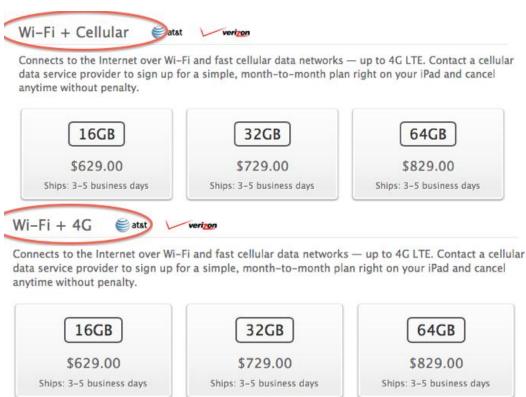
LTE on iPhone 5

Model Number ²	LTE Band Support ³	Country	Supported LTE Networks
Model A1428	4 (AWS) 17 (700b MHz)	United States	AT&T
(GSM model)		Canada	Bell (including Virgin) Rogers (including Fido) Telus (including Koodo)
Model A1429 (CDMA model)	1 (2100 MHz) 3 (1800 MHz) 5 (850 MHz)	United States	Sprint Verizon
	13 (700c MHz) 25 (1900 MHz)	Japan	KDDI
Model A1429	1 (2100 MHz)	Germany	Deutsche Telekom
(GSM model)	3 (1800 MHz) 5 (850 MHz)	United Kingdom	EE
		Australia	Optus (including Virgin) Telstra
Not compatible with the 80	00MHz and 2.6GHz bands		
deployed across much of we	estern Europe, including	Japan	Softbank
Spain, Italy and France. Instead, it works on the 1.8GHz band, which is still being used for voice calls by most operators in Europe.		Korea	SK Telecom KT
		Hong Kong	SmarTone
		Singapore	M1 SingTel


FDD and TDD LTE frequency bands

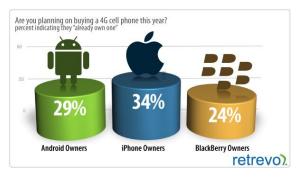
FDD LTE frequency band allocations

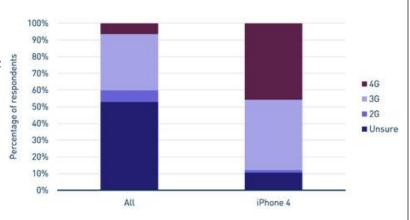
LTE BAND NUMBER	UPLINK (MHZ)	DOWNLINK (MHZ)	WIDTH OF BAND (MHZ)	DUPLEX SPACING (MHZ)	BAND GAP (MHZ)
1	1920 - 1980	2110 - 2170	60	190	130
2	1850 - 1910	1930 - 1990	60	80	20
3	1710 - 1785	1805 -1880	75	95	20
4	1710 - 1755	2110 - 2155	45	400	355
5	824 - 849	869 - 894	25	45	20
6	830 - 840	875 - 885	10	35	25
7	2500 - 2570	2620 - 2690	70	120	50
8	880 - 915	925 - 960	35	45	10
9	1749.9 - 1784.9	1844.9 - 1879.9	35	95	60
10	1710 - 1770	2110 - 2170	60	400	340
11	1427.9 - 1452.9	1475.9 - 1500.9	20	48	28
12	698 - 716	728 - 746	18	30	12
13	777 - 787	746 - 756	10	-31	41
14	788 - 798	758 - 768	10	-30	40
15	1900 - 1920	2600 - 2620	20	700	680
16	2010 - 2025	2585 - 2600	15	575	560
17	704 - 716	734 - 746	12	30	18
18	815 - 830	860 - 875	15	45	30
19	830 - 845	875 - 890	15	45	30
20	832 - 862	791 - 821	30	-41	71
21	1447.9 - 1462.9	1495.5 - 1510.9	15	48	33
22	3410 - 3500	3510 - 3600	90	100	10
23	2000 - 2020	2180 - 2200	20	180	160
24	1625.5 - 1660.5	1525 - 1559	34	-101.5	135.5
25	1850 - 1915	1930 - 1995	65	80	15


TDD LTE frequency band allocations

LTE BAND NUMBER	ALLOCATION (MHZ)	WIDTH OF BAND (MHZ)
33	1900 - 1920	20
34	2010 - 2025	15
35	1850 - 1910	60
36	1930 - 1990	60
37	1910 - 1930	20
38	2570 - 2620	50
39	1880 - 1920	40
40	2300 - 2400	100
41	2496 - 2690	194
42	3400 - 3600	200
43	3600 - 3800	200

The New Ipad


May 2012: Apple changes name of 'iPad WiFi + 4G' to 'iPad WiFi + Cellular' in many countries following international criticism



Important?

- July 2011: A survey by Retrevo found that (34% of) iPhone 4 owners actually believe that the "4" in their iPhone 4 stands for 4G
- Dec 2011: A survey from Analysys
 Mason showed that
 - 46 percent of iPhone 4 users believe that they already have 4G capability, even though they don't.
 - Over 50% of respondents were unsure as to their network technology.

[http://www.reuters.com/article/2012/09/14/us-apple-europe-spectrum-idUSBRE88D0NX20120914] [http://www.retrevo.com/content/blog/2011/07/confusion-and-skepticism-may-impede-4g-adoption] [http://www.pipelinepub.com/0112/OSS_BSS/Race-To-4G-1.php] [http://www.analysysmason.com/About-Us/News/Insight/Insight_How_to_sell_4G_Dec2011/]

Advanced Mobile Wirless Systems

((EEE
١.	,

(Ultra Mobile Broadband)

		\
Mobile WiMAX	3GPP LTE	3GPP2 UMB
5, 7, 8.75, and 10 MHz	1.4, 3, 5, 10, 15, and 20 MHz	1.25, 2.5, 5, 10, and 20 MHz
OFDM	OFDM	OFDM
OFDMA	SC-FDMA	OFDMA and CDMA
TDD	FDD and TDD	FDD and TDD
Localized and distributed	Localized	Localized and distributed
Yes	Yes	Yes
QPSK, 16-QAM, and 64-QAM	QPSK, 16-QAM, and 64-QAM	QPSK, 8-PSK, 16-QAM, and 64-QAM
10.94 kHz	15 kHz	9.6 kHz
512	512	512 ng and Goodman, 2008
	5, 7, 8.75, and 10 MHz OFDM OFDMA TDD Localized and distributed Yes QPSK, 16-QAM, and 64-QAM	10 MHz and 20 MHz OFDM OFDM OFDMA SC-FDMA TDD FDD and TDD Localized and distributed Yes Yes QPSK, 16-QAM, and 64-QAM and 64-QAM and 64-QAM 10.94 kHz 15 kHz 512 512

Advanced Mobile Wirless Systems

	$Mobile\ WiMAX$	3GPP LTE	3GPP2 UMB
Channel coding	Convolutional coding and convolutional turbo coding: block turbo coding and LDPC coding optional	Convolutional coding and turbo coding	Convolutional coding, turbo coding, and LDPC coding
MIMO	Beamforming, space-time coding, and spatial multiplexing	Multi-layer precoded spatial multiplexing, space-time/ frequency block coding, switched transmit diversity, and cyclic delay diversity	Multi-layer precoded spatial multiplexing, space-time transmit diversity, spatial division multiple access, and beamforming